Industrial Communication

Chapter 4: Ethernet Modbus TCP/IP

Ethernet Modbus TCP/IP Features

Ethernet Is a Network

• History

- Developed by Xerox PARC (1973 1975)
- First standard to be published in 1980 (IEEE 802.3)
- Sharing Information
- Network

Ethernet Modbus TCP/IP

Modbus Frames over Ethernet

Modbus Serial

• Ethernet Modbus TCP/IP

Layers Used Ethernet Modbus TCP/IP

• Osi Model:

APPLICATION	Modbus Protocol
PRESENTATION	Not used
SESSION	Not used
TRANSPORT	Ensure the transfer of the data on the network (TCP/UDP)
NETWORK	Message Routing – IP Protocol
DATALINK	CSMA-CD (random access with collisions)
PHYSICAL	Defines physical media: RJ45, Fiber Optic, Radio,

Industrial Ethernet

• Used in Different Levels

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

TCP (Transport Control Protocol)

Port and socket concept

- Server devices may be running multiple services (Modbus, Web, Bootp,etc)
- These services listen on different TCP port for a request
- Client device sends an IP message which includes the source port number and destination port number to establish a connection between two devices (Socket connection).

Modbus TCP

TCP (Cont.)

Socket management multiple connections

- A Client can have multiple connections to the same Server service
- A Server can have multiple Clients connected to the same service

TCP Connections

Point to point messaging protocol

- Uses a handshake process to establish a connection
- Accounts for each byte of sent and received to guarantee delivery
- Connection is managed by setting bits in the TCP message to request (SYN), acknowledge (ACK), terminate or abort the connection (FIN)

IP (Internet Protocol)

• IP: Messaging Protocol Operating at OSI Layer 3 (Network layer)

• IP Characteristics

- Responsible to transmit the message to the destination IP address to the local network or to the remote network.
- Fragment a packet that is larger than the maximum transmission size unit (MTU) to send as multiple packets and de-fragment the packet at the destination level.
- It makes no guarantee that the message will reach its destination. The reliability is done by the Transport layer

IP Address Assignment

Default IP Address

• Derived from the factory and unique MAC address

		Premium & M340 PLCs		Quantum/Momentum/Advantys
TSX ETY510	MAC @	00 - 80 - F4 - 12 - 0C - AF	MAC @	00 - 00 - 54 - 12 - 0C - AF
RX TX 8	IP @	= 85 . 16 . 12 . 175	IP @	= 84 . 18 . 12 . 175
MAC (a): 00.80.F4.0106.D		- First 2 bytes are decimal 85 & 16		- Hex to Decimal conversion of last 4 bytes

- Hex to Decimal conversion of last 2 bytes

• Unique IP Addresses for Each Device

- In addition to MAC Hardware addresses, each devices is assigned a logical IP address.
- Assignment can be static or dynamic

Example: 139.160.12.85

The IP address contain 4 bytes and each byte has a range from 0 to 255.

Classful IP Address

• There are 4 main address classes

- Class A Used for larger networks
 - •IP Address Range : 1.0.0.0 to 127.255.255.254
 - •Default subnet mask : 255.0.0.0 16 777 216 hosts number
- Class B Used for Medium networks (ex. Schneider Electric)
 - •IP Address range : 128.0.0.0 to 191.255.255.254
 - •Default subnet mask : 255.255.0.0 65 534 hosts number
- Class C Used for smaller network and individual users
 - •IP Address range : 192.0.0.0 to 223.255.255.254
 - •Default subnet mask : 255.255.255.0 254 hosts number
- Class D Used for Multicast groups
 - •IP Address range : 224.0.0.0 to 239.255.255.255
 - Devices cannot be assigned IP addresses in the multicast range
- The Class E is reserved for the future : 240.0.0.0 to 255.255.255.255

Special IP Addresses

Loopback

- IP address = 127.0.0.1
- Reserved for loopback (host connecting to itself)
 - •Ex. A web browser connecting to a web server running on the same PC

Broadcast

- IP address = 255.255.255.255
- Used by the network management or diagnostics is addressed to all devices on the network.

Subnet Mask

• Used to determine if the remote device is on a local or remote network

- The mask separates the network portion of the IP address from the host portion of the IP address
- The sending device uses its configured subnet mask to perform a Boolean **AND operation** with both its local IP address and the IP address of the remote device to connect to

	IP Address	172.16.5.20		10101100.00010000.00000101.00010100
Local device	Subnet Mask	255.255.255.0	AND	11111111.11111111.11111111.00000000
	Result			10101100.00010000.00000101.00000000
Pomoto dovico	IP Address	172.16.4.20		10101100.00010000.00000100.00010100
Remote device	Subnet Mask	255.255.255.0	AND	11111111.11111111.11111111.00000000
	Result			10101100.00010000.00000100.0000000

Troubleshoot TCP/IP

In Windows

2 0.0.0.0

0.0.0.0

Monitoring Free Tool: WireShark

ARP

ARP

ARP

ARP

ARP

255.255.255.255 DHCP

255.255.255.255 DHCP

Modicon_12:04:5a Broadcast

Telemeca_07:32:e5 Broadcast

Modicon_12:04:5a Broadcast

Modicon_12:04:5a Broadcast

Modicon 12:04:5a Broadcast

	Internet Protocol (TCP/IP) Properties	? ×
	General	
	You can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.	s or
	O <u>O</u> btain an IP address automatically	
,	⊡ Use the following IP address: □	— II
`	<u>I</u> P address: 192 . 168 . 0 . 212	
	Sybnet mask: 255 . 255 . 254 . 0	
Gratuito DHCP Dis Who has Who has DHCP Req Who has Gratuito	ous ARP for 84.18.4.90 (Request) .254 scover - Transaction ID 0x93a8366b 192.168.0.24? Tell 192.168.0.26 192.168.0.24? Tell 0.0.0.0 quest - Transaction ID 0x93a8366b 192.168.0.24? Tell 0.0.0.0 ous ARP for 84.18.4.90 (Request)	
	Alternate DNS server:	
	Advanced	

OK.

Cancel

Troubleshoot TCP/IP

• Ping Command

• Used to check a connection

• Launched from the DOS window (under XP)

Industrial Communication Course with Unity Pro – Ethernet mouses for m

Schneider Electric | Industry Business | Training | E. Pauchet - V5.0 - May 2010

IP Address (p4-19)

- Find your IP address (record it for future use)
- Change the IP address into 192.168.0.X1 or 192.168.0.1X1 (X=Group Number)

Troubleshoot TCP/IP (p4-23)

- Use PING command to ping your partner

Dynamic Assignment

• IP Assignment Given By Servers

BootP Server

• Server Has a Populated List of Devices

• Devices identified with their MAC address

BootP Server (Cont.)

• Example in Unity Pro

Config	guration	Messaging IO Scanning	Global Data S	NMP Address Se	rver NTP E	Bandwidth
Clien	t / Server addre	ess table				
	Access	MAC address	Name	IP address	Netmask	Gateway
1		00.80.F4.FF.00.D5	I	192.168.0.23	255.255.255.0	0.0.0.0
2	নি	00.80.F4.FF.44.21	•	192.168.0.81	255.255.255.0	0.0.0.0
3	Ī	00.80.F4.FF.F2.15		192.168.0.40	255.255.255.0	0.0.0.0
4	Ī					
5		1	1			

• Limitation: Device Cannot Be Changed without Reconfiguration

• As each device has a unique MAC address, replacing a failed device needs a reconfiguration of the BootP Address Server table.

DHCP Server

Same As BootP but Based on Role Name

• User configurable names used instead of MAC Addresses

DHCP: How To Create Role Names

• Depends on The Device

- Using embedded HMI (ex: ATV71)
- Using web based applications (ex: Advantys STB)
- Using dedicated applications (ex: Unity Pro)
- Using hardware switches (ex: Tesys T, Advantys STB)

• Hardware Switches Example:

• Base name + Custom number derived from Switches

• Example with Unity Pro

IP Cor	nfiguration	Messaging	IO Scanning	Global Data SN	MP Address So	erver NTP I	Bandwidth	
_ Clie	ent / Server addr	ess table						
				[I		
	Access	MAC	address	Name	IP address	Netmask	Gateway	
1	- -			STBNIP2212_123	192.168.0.23	255.255.255.0	0.0.0.0	
2				TesysT_046	192.168.0.81	255.255.255.0	0.0.0.0	
3	- -			TCESGPA23F14F002	192.168.0.40	255.255.255.0	0.0.0.0	

Advantage: Easiness of Replacement

• Compared to the BootP method, replacing a faulty device with DHCP doesn't need to reconfigure the PLC application.

FDR Server

• Additional Feature of DHCP Server.

• Send the stored configuration inside a replaced device

Address Resolution Protocol

- Request to obtain IP address
- Duplicate Address Check
 - •Device issues ARP for the IP address it intends to take
 - •If no response, the device assumes the IP address
 - •If there is a response, the device should not assume the IP (duplicate address)

• Once the IP has been determined to be available

- Device issues a Gratuitous ARP (Includes Source IP and MAC address information)
 - •Used to populate device list in the other devices and routers
- Advertises to others its availability on the network
 - •Allows devices wishing to communicate with it that it is available

UDP (User Datagram Protocol)

• Transport protocol like TCP but without Acknowledgement

- Provides an unreliable mechanism to transport data
- Messages can be lost (not acknowledgment of the packet)
- Retries and data integrity can be provided by the application layer

Requires less processing overhead that TCP

- Without ordering messages and managing connections. it is faster than TCP
- The network interface does not have as much work to do as with TCP
- Allows the Broadcast message, unlike TCP that requires a dedicated socket between the end device. Applications example using UDP :
 - Simple Network Management Protocol (SNMP)
 - Network Time Protocol (NTP)
 - BootP and DHCP
 - Global Data (Real Time Publish Subscribe)

Network Design: Media

Media

- Copper media
- Twisted pairs wires
- Easy to install : low cost installation

• Fiber optic

- Adapt different types of media
- Using over long distances or harsh industrial environment

Network Design: Copper Media

Rated by category

• Categories established by ANSI/EIA/TIA Committee

• Industrial applications recommend Shielded media for additional protection from external sources of interference

• Uses Standard 8 pin RJ-45 Connector

- Cat 5 : Minimum required for 100Mbs Ethernet (unshielded cable)
- Cat 5e : Enhanced for 100Mbs Full Duplex operation (shielded cable)
- Cat 6 : New standard for 1 Gbs operation

The maximum length of one segment is 100 meters at 10, 100, 1000 Mbit/s.

Network Design: Fiber Optic

- Glass or plastic fiber designed to guide light along its length by total internal reflection.
- Permits digital data transmission over longer distances and at higher data rates than other forms of wired and wireless communications (up to 20km)

Bayonet style connector

Keyed square connector May be coupled together

LC connector

Newer keyed Fiber connector Smaller form factor : higher density

Small form factor, keyed connector

Network Design: Wifi

Wireless Communication

- Available soon in Schneider Electric (already available with partners)
- Main issues are security and EMC behavior

Network Design: Components

• Hubs or switches

• Hubs are not recommended for industrial application

• Transceivers

- Adapt different types of media
 - •Ex. 499NTR10100 : converter electrical signal to optic signal

Routers

• Used to route information between networks

Network Design: Hubs

• Half Duplex (Collisions)

- Each and every 'frame' is repeated out all ports by hub
- All 'nodes' listen to see if they are the receiver of the frame
- As more nodes are added and collisions increase, performance decreases
- If two devices transmit simultaneously, a collision occurs

Network Design: Hubs

• Full Duplex (Collisions)

- Switch learn the addresses of the devices attached to them
- Switch full duplex can simultaneously transmit and receive a message

Network Design: Routers

Routing data between different sub networks

- Act as a Gateway (IP address to be defined)
- A router has an interface for each different networks. A table of those interfaces tells the router on which interface to send the packet

Nota : If there is not a router on the local network, the default gateway can be left blank or 0.0.0.0

Network Design: Topologies

Ring topology

Tree / Star topology

No switches needed

Network Design: Point to Point Cables

• Straight Cable

• Connect end devices to hubs or switches

Switch or Hub

Switch or Hub

Crossed Cables

• Connect hubs or switches together

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

Programming with Unity Pro

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

2 Ways of Configuration

Standard Ethernet Ports

- CPU Embedded Ports (BMXp342030, TSXP572634...)
- Ethernet Modules (BMXNOE0100, TSXETY5103...)
 - Configuration done from project browser

• DTM Compatible Ports

• Converged Modules (BMXNOC0401, TSXETC101, ...)

Configuration done from the DTM browser

Standard Configuration

• From Project Browser, Select the Network Component

• Right click and create a new network

etwork Co	mment			
List of ava	ilable Networks:			
Ethernet			•	
Change N	ame:			
MyEthern	etNetwork			
		77922		

• Once Created, Link it to the Module

02.10	8 0.2 : BMX NOE 0110.2
d B	Ethernet 1 Port 10/100 RJ45
NOE NC 0110.2 010	BMX NOE 0110.2
	Eurotion:
₅₀₅	ETH TCP IP
	Task: MAST
	Net Link: No Link No Link MyEthemetNetwork

Network Configuration

• Options Depends on the Model

Model Family		Module Address Rack Module	Channel	NO VIIIties	IO Scanning Global Data
Module IP Address				NO -	Address Server
IP Address	Subnetwork Mask 255 . 0 . 0 . 0	Gateway Address	0.0	NO 🔽	NTP
- Model Family CPU 2020, CPU 2030 (>= V02.00)	PRA 0100	Module Address Rack Module	Channel	NO Vilities	SMTP
Module IP Address					
IP Address	Subnetwork Mask 255 . 0 . 0 . 0	Gateway Address) . 0		

Module's Utilities

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

Module's Utilities

- IP Configuration
- Messaging
 - Access rights from other devices.
- SNMP (Simple Network Management Protocol)
 - Used by software monitor and manage devices on an IP network. (ConnexView)
- SMTP (Simple Mail Transfer Protocol)
 - Parameters for sending and receiving e-mail.
- IO Scanning
- Global Data
- Address Server
 - configures the DHCP and BOOTP services included in the module.
- NTP (network time protocol)
 - Define the time synchronisation server
- Common Words (Premium Only)
 - used to configure words shared on EthWay
- Bandwith
 - estimation of the Bandwith taken by the different services.

IP Configuration

- Static (Configured)
- Dynamic (From a server)
 - Assign a role name (optional)

IP Configuration	Messaging	IO Scanning	Global Data	SNMP
- IP address configu	ration ———			
Configured				
	IP address	192 . 168	. 0 . 55	
S	ubnetwork mask	255.255	. 255. 🚺	
(Gateway address	0.0	. 0 . 0	
C From a server				
	Device Nam	e		
Ethernet configural	tion			
• E	Ethernet II	O 802.	3	

• Configuration Must Match with Rotary Switches!

Exercise

• Ethernet Configuration (p4-38)

- Create a new project
- Create a new network
- M340 IP address = 192.168.0.X5
- Test the connection
- Configure the role name of the slave
- Configure the DHCP: STB with IP address of 192.168.0.X2
- Test the configuration

Explicit Exchange Data

Function Blocks

- ADDM: Address Conversion : used to provide the target address for others function blocks (M)
- ADDR: Address Conversion : used to provide the target address (P)
- CREAD_REG: Continuous Register Reading (Q)
- CWRITE_REG: Continuous Register Writing (Q)
- DATA_EXCH: Exchanging Data (M,P)
- MBP_MSTR: Multiple Functions (Q)
- READ_REG: Read Register (Q)
- READ_VAR: Reading variables (M, P)
- SEND_EMAIL: Sending Email (M)
- SYMAX_IP_ADDR: target address to reach legacy SquareD PLC (Q)
- TCP_IP_ADDR: used to provide the target address (Q)
- WRITE_REG: Write Register (Q)
- WRITE_VAR: Writing variables (M, P)

ADDM FB

• IN:

• String variable: 'NameOfTheNetwork{TargetIPAddress}'

• Out

• Converted table of words, to be used in the others FB

• IN:

- ADR: to be linked to the output of the ADDM block.
- **OBJ:** defining object to read (in the case of Modbus register: '%MW')
- NUM: starting register to read
- NB: number of consecutive register to read

• OUT

• **RECP:** reception zone of the block, delivering the value read (table of words)

• IN/OUT

• **GEST:** table of 4 words to manage the communication block (errors, timeout, length, etc..)

WRITE_VAR FB

• IN:

- ADR: to be linked to the output of the ADDM block.
- **OBJ:** defining object to read (in the case of Modbus register: '%MW')
- NUM: starting register to read
- EMIS: source table to write from the PLC

• IN/OUT

• **GEST:** table of 4 words to manage the communication block (errors, timeout, length, etc..)

Exercise

Sending Requests (p4-42)

- Enable "Allow Dynamic Arrays" in Project Settings
- Insert the ADDM FB
- Insert READ_VAR and WRITE_VAR FB
- Test the configuration

Implicit Exchange: IO Scanning

• Table of Words Exchanged Automatically Between Master & Slave

IO Scanning

• Filling the Different Fields

Master	SMV zones IPet. From 100 🚍	to (343	From 400	=	e [14]		Pepetitive rat	te step. 🧿	=
Seame	d peripherals										n ndadi				
	IP address	Device Name	Usit ID	Slave Systas	Health Timeout (ms)	Repetitive rate (ms)	RD Master Object	BD Ref Slave	PID length	Last value (input)	T	VR Master Object	VB Bef Slave	VR length	Desc
1	192 169.0.23	PRM_Mater	_ 255	inder 🖤	1500	2%	54MV100	0	60	Set to 0	w 3	0.041400	4096	50	
2	192,169,0.43	a second and the second second	255	indes 💌	1500	6.0	2241/160	1012	4	Hold last	- 3	2454450	34	65	
3	192.168.0.62	STEMP	288	indes 💌	1500	69	SCHEVIER	5391	100	Hold Last	피	WW 515	0	100	_
15	1	2	3	4	5	6	7	8	9	10	20	11	12	13	14

IO Scanning (Cont.)

• Debug View Online Mode (M340 and Premium Only)

• IODDT Can Be Configured

I/O objects				
		Address	Name	Туре
	1	%CH0.2.MOD	ethernet	T_GEN_MOD
		8 CU0.2.0	ath	T COM ETH RMX

Name	•	Value	Туре 🔻	Comment
🖃 🧧 et	hernet		T_GEN_MOD	
- 0	MOD_ERROR	0	BOOL	Module error
	EXCH_STS	0	INT	Exchange status
	STS_IN_PROGR	0	BOOL	Status parameter read in progress
🔴	EXCH_RPT	0	INT	Channel report
	STS_ERR	0	BOOL	Error while reading module status
- 0	MOD_FLT	0	INT	Module faults
	MOD_FAIL	0	BOOL	Internal fault: Module failure
🔴	CH_FLT	0	BOOL	Faulty channel(s)
•	BLK	0	BOOL	External fault: Terminal block
- 0	CONF_FLT	0	BOOL	Hardware or software configuration fault
- •	NO_MOD	0	BOOL	Module absent or powered-down
•	EXT_MOD_FLT	0	BOOL	FIPIO extension module fault
🔴	MOD_FAIL_EXT	0	BOOL	Internal fault: Module failure (only FIPIO extension)
	CH_FLT_EXT	0	BOOL	Faulty channel(s) (only FIPIO extension)
- 0	BLK_EXT	0	BOOL	External fault: Terminal block (only FIPID extension)
	CONF_FLT_EXT	0	BOOL	Hardware or software configuration fault (only FIPIO extension)
	NO_MOD_EXT	0	BOOL	Module absent or powered-down (only FIPIO extension)
🖻 📃 et	h		T_COM_ETH_B	
- 0	CH_ERROR	0	BOOL	Channel error
- •	SERVICES_STS	-20	INT	Status of the different services
	P502_STATUS_BIT	0	BOOL	Port 502 messaging service status (0=0K, 1=N0K)
🕚	IOS_STATUS_BIT	0	BOOL	IO Scanner service status (0=0K, 1=N0K)
	GLBD_STATUS_BIT	1	BOOL	Global Data service status (0=0K, 1=N0K)
🔷	EMAIL_STATUS_BIT	1	BOOL	Email service status (0=0K, 1=N0K)
	FDBS_STATUS_BIT	0	BOOL	EDB Server service status (0=0K_1=N0K)

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

IO Scanning Specific Integration Tool

• Only with Compatible Devices

• PRM / OTB / STB

	IP address	Device Name	Unit ID	Slave Syntaz	Health Timeout (ms)	Repetiti ve rate (ms)	RD Master Object	F
1	192.168.0.22		. 255	Index 💌	1500	60	%MV200	535
2				_		0		
3	Prop	erty		1				
4	r= D	evice Tupe —	3		- Device N	lame		
5		3 4						
6				-				
7					-			
8		TB TB						
9		TM						
10								
11		ata Exchange	Required —					
12		Input w	orde 🗖					
13		input wi						
14		Output w	ords 0					
15		Ootpot m	ords 1.					
16		1	63					
17		OK	Laupek	No Tool	Un	date	Close	
18			Lagitor	1001001	op	aute.	Close	
19							- 26	

Exercise

• IO Scanning Configuration (p4-48)

- Configure IO Scanning
- Testing IO Scanning
- Monitoring IO Scanning Status
- Retrieving Process Data Values

Advantys STB Integration Tool (p4-52)

- Create the device
- Test the configuration

FDT / DTM Configuration

• Field Device Tool

- Vendor tools integrated inside one tool
- Tools are Device Type Managers (DTM)

• Benefit: Common Environment:

- User Management
- DTM Management
- Data Management
- Network Configuration
- Navigation

Device Tool Managers

Industrial Communication Course with Unity Pro – Ethernet Modbus TCP/IP Schneider Electric | Industry Business | Training | E. Pauchet – V5.0 – May 2010

DTM in Unity Pro

• DTM Browser

- Integrated DTM (implemented when module added from the PLC_Bus)
- Dedicated DTM (devices that can interact with Unity Pro application)
- Third Party DTM (Unity Pro used as any other FDT frame application)

• Tools – DTM Browser

Tools Build PLC De	bug Window Help
✓ Project Browser	Alt+1
Hardware Catalog	Alt+2
In Types Library Brows	ser Alt+3
Operator Screen Lib	arary Alt+4
<u>S</u> earch / Replace	Alt+5
Diagnostic Viewer	Alt+6
PLC Screen	Alt+7
<u>V</u> ariable Window	Alt+8
<u>D</u> ata Editor	Alt+9
✓ DTM Browser	Alt+Shift+1
Convert Partially	
🔁 Types Library Mana	ger
Customize	
Options	
Project Settings	

Hardware Catalog

• DTM Database

• Tools Menu – Hardware Catalog

• Update Tool

- Used to add New devices inside the catalog
- DTM must be installed in Windows before

and Leasting					-
GatewagOTM IS1 CPM GatewagOTM IS1 DM Adversign STD Generatic EDS Device DTM Generatic Modituu Device DTM EIP Matter DTM EIP Matter DTM Advertigs DTB	Perkee STB NIC212 STB NIC21A STB NIC24k	1.0 1.0 1.0	009-10-05 2009-10-05 2009-10-05	Vendor Schweider Electric Schweider Electric	
	1	N.]

- DTM Config saved into STU or STA (not XEF)
- DTM must be installed on the computer (otherwise project cannot be saved)

DTM Transfer

• With Project Transfer

Integrated DTM

• Direct Ethernet Communication

Dedicated or Third Party DTM

PLC

DTM Transfer for Non Integrated DTM

• From DTM Browser, Select Connect then Store data to device

NOC0401 Configuration

Added in Unity Pro

BMX NOC 0401	Configuration		
	Project Network name :	M_NOC0401	_
	Inputs %MW index: 700 Max size: 28	Outputs 24MW index: Max size:	800
	EIP connectivity network	Update application	

PLC_Bus Viewer

Integrated DTM Module

DTM Browser

Add a Modbus Slave

- Generic Modbus Slave DTM
- Installed Modbus Slave DTM
 - Example: Advantys STB DTM

	Device	Туре	Vendor	Version	Date	
3	Lexium 32 (from EDS)	Device	Schneider Electric	1.1		-
3	Modbus Device	Device	Schneider Electric	1.00.0	2010-07-01	}
1	STB NIP2x1x	Device	Schneider Electric	1.0	2009-10-05	
ŝ	STBNIC2212 (from EDS)	Device	Schneider Electric	2.10		
2	TSXETC100 (from EDS)	Device	Schneider Electric	1.1		
Ē	TSXETC101 (from EDS)	Device	Schneider Electric	1.1		
8	EtherNet/IP Messaging (fr	Device	Bockwell Software	11		-

Add DTM

Close

Configure the Slave

• Properties

Customize IODDT Variable Names

Address Setting

• Enter static or dynamic IP configuration

• Request Setting

• IO Scanning configuration inside the module

Channel Properties Services	Proper	rties 🛛 Address Se	etting Re	quest Setting						
😟 EtherNet/IP Local Slaves										
Device List [003] Advantys_STBNIP2212 <mdb: 0.2<="" 192.168="" <mdb:="" [004]="" dtm="" nip2212="" stb="" td=""><td></td><td>Add Reques</td><td>t</td><td>Remove</td><td></td><td></td><td></td><td></td><td></td><td></td></mdb:>		Add Reques	t	Remove						
	Г	Connection Bit	Unit ID	Health Time Out(ms)	Repetitive Rate(ms)	RD Address	RD Length	Last Value	WR Address	_E 🔺
		1	255	1500	60	8603	1	Hold Value	8601	1
⊡ 🖉 [007] ATV71_ModbusTCP <mdb: 192.168.0.3<="" td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></mdb:>				-						
Request 001: Items				-						-
Logging	-									

Monitoring Connection

Connection Bit

• Monitoring if device is present

Modification Force 7	5] N 5 5	Ⅲ ≯ ₩		
Name 🔹	Value	Туре 👻		
主 🛛 📕 managePara		ARRAY[03] OF		
庄 🛯 📕 Received_Data		ARRAY[049] 0		
- 🕒 %m22	0	EBOOL		
🚊 🕘 M_NOC0401_7_IN		T_M_NOC0401		
🖻 📕 HEALTH_BITS_IN		ARRAY[031] 0		
HEALTH_BITS_IN[0]	2#0111_0011	BYTE		
HEALTH_BITS_IN[1]	0	BYTE		

Control Bit

• Enable / Disable IO Process Data update

Modification Eorce	25 <u>25</u> 25	💷 🗡 M
Name 👻	Value	Туре 💌
🔶 %m22	0	EBOOL
😟 🖅 🚺 M_NOC0401_7_IN		T_M_NOC0401
🖨 🕘 M_NOC0401_7_OUT		T_M_NOC0401
🖻 🖳 CONTROL_BITS_OUT		ARRAY[031] 0
CONTROL_BITS_OUT[0]	0	BYTE
CONTROL_BITS_OUT[1]	0	BYTE
CONTROL_BITS_OUT[2]	0	BYTE
CONTROL_BITS_OUT[3]	0	BYTE
CONTROL_BITS_OUT[4]	0	BYTE
CONTROL_BITS_OUT(5)	0	BYTE

Exercises

Change the Device Role Name (p4-64)
 Assign new name to distinguish from previous exercise

Installing the DTM (p4-65)
 Installing DTM & Update the hardware catalog

Configuring NOC0401 and Modbus TCP/IP (p4-67)

- Insert BMXNOC0401 and configure it
- Add a Generic Modbus device and configure it
- Create custom variable names
- Test the application
- Do the same by configuring device from DTM

EtherNet Modbus TCP

• Main Features Reminder:

- up to 100m in 100BASE TX (RJ45 cables) at 100Mbit/s up to 1Gbit/s
- Performances <10ms if 802.1Q is respected (with Connexium switches)
- Thousands of devices (depends on the IP config.) but IO Scanning Limitations
- Max 240 bytes per telegram
- No separate ground line
- Excellent error detection thanks to TCP
- Configuration by DTM
- Easy to debug (no need of additional hardware on the computer)